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Abstract:

Many current conceptual rainfall-runoff and shallow landslide stability models are based on the topographic index concept
derived from the steady-state assumption for subsurface water flow dynamics and the hypothesis that the surface gradient is a
good approximation for the gradient of the total hydraulic head. However, increasing field evidence from sites around the world
has shown poor correlations between the topographic index and the patterns of soil water storage. Here we present a new,
smoothed, dynamic topographic index and test the ability of this index to reproduce spatial patterns of wetness areas and storage
as provided by a distributed, physically based, Boussinesq equation (BEq) solver. Our results show that the new smoothed
dynamic topographic index outperforms previous, locally computed indices in the estimation of storage dynamics, resulting in
less fragmented and disconnected spatial patterns of storage. Our new dynamic index is able to capture both the upslope and
downslope controls on water flow and approximates storage dynamics across scales. The new index is compatible with high-
resolution topographic data. We encourage the use of our smoothed dynamic topographic index to describe the lateral subsurface
flow component in landslide generation models and conceptual rainfall-runoff models, especially when high-resolution digital
elevation models are available. Copyright © 2011 John Wiley & Sons, Ltd.
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INTRODUCTION

The use of digital elevation data to calculate water flow
paths has been a central focus of hydrological modelling
ever since the development of the area-slope index in
geomorphology (Carson and Kirkby, 1972) and the
topographic wetness index (TWI) in hydrology (Kirkby,
1975). These indices have been largely used to infer the
water storage in the entire catchment area (e.g. Lamb et al.,
1998), the extension of saturated areas (e.g. Grabs et al.,
2009) and as general indicators of the influence of
topography on soil–water storage dynamics (e.g. McGuire
et al., 2005; Tetzlaff et al., 2009a,b).
The traditional topographic index (Kirkby, 1975) is

normally calculated, by digital terrain analysis, as the natural
logarithm of the ratio between the drained area per unit
contour length, a, and the slope of the ground surface at the
location, tanb: TWI= log(a/tanb). Beven and Kirkby (1979)
developed the topographic index into a terrain analysis-based
hydrologic model (TOPMODEL), which is able to produce a
simple relation of soil–water storage (deficit) in a catchment.
This model expresses the local storage deficit below
saturation by assuming that the major factor affecting the
water flow paths is the catchment topography:
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TWIþ log Rð Þ � log Tð Þð Þ (1)

where R [LT�1] is the net vertical recharge (i.e. the rainfall
intensity minus the sum of evapotranspiration and bedrock
leakage) usually assumed spatially uniform, T [L2T�1] is the
maximum soil transmissivity, obtained when the ground-
water level is at the ground surface, f [L] is a parameter
controlling the rate of decline of transmissivity with
increasing storage deficit, and Z [L] is the local storage
deficit below saturation expressed as water table depth from
the ground surface.

Table I summarises the algorithms that have been
developed to compute the TWI since the early 1980s
(Table I). Early work augmented the TWI from a single
flow path direction to a multiflow directional algorithm to
capture the smearing of flow downslope produced by
multiple partial flow path weighting (e.g. Quinn et al.,
1991; Tarboton, 1997; Seibert and McGlynn, 2007). The
main premise of each of the TWI variants is that elevation
potential dominates total hydraulic potential, and hence
topography is a good proxy for representing subsurface
flow paths and soil–water storage dynamics. This is
generally the case in mountain regions with moderate to
steep topography (Tetzlaff et al., 2009a), where a shallow
(highly conductive) soil layer lies on an impervious
bedrock substrate (Western et al., 2004). However, field-



Table I. A list of the major efforts of the last 30 years to produce more realistic terrain indices from digital elevation models

No. Authors Year
Terrain index
investigated

Improvement
efforts focused

upon Method

1 Beven and Kirkby 1979 TWI
2 O’Callaghan

and Mark
1984 a a Single flow direction (D8)

3 Quinn et al. 1991 a a Multiple flow directions
4 Barling et al. 1994 a a Time-variable upslope area, a(t)
5 Tarboton 1997 a a Infinite possible single-direction flow pathways (D1)
6 Beven and Freer 2001 TWI a Time-variable upslope area, a(t)
7 Borga et al. 2002 TWI a Time-variable upslope area, a(t)
8 Orlandini et al. 2003 a a Path-based method considering cumulative deviation

from the steepest directions (D8-LTD)
9 Hjerdt et al. 2004 tanb tanb Downslope index, DWI
10 Seibert and

McGlynn
2007 a a Combination of multiple flow and D1 (MD1)
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based testing of the TWI has shown weak relations with
soil moisture patterns (Burt and Butcher, 1986; Seibert
et al., 1997, Lamb et al., 1998; Western et al., 1999) and
often poor correlations with shallow groundwater levels
(Iorgulescu and Jordan, 1994; Jordan, 1994).
Some studies have also questioned the fundamental

assumptions of the topographic index theory (Burt and
Butcher, 1985; Crave and Gascuel-Odoux, 1997; Seibert
et al., 1997; Pellenq et al., 2003; Hjerdt et al., 2004).
Two of these assumptions are of widespread use: (i) the
hypothesis of steady-state subsurface flow, where time-
dependent storage terms are neglected, and (ii) the
validity of the kinematic-wave equation (KWeq) used to
describe the subsurface water flow. The latter is an
approximation of the BEq in which, however, the
diffusive term depending on hydrostatic pressure gradients
is neglected and the hydraulic gradient is approximated
with the slope of the topographic surface. The KWeq can
therefore only propagate the effects of disturbances in a
downslope direction, and it cannot predict any backwater
effect induced by complex dynamical organisation of flow
paths.
Barling et al. (1994) were the first to deal with the

problem of the steady-state assumption of flow, arguing
that rainfall events are seldom sufficient to bring a hillslope
to the steady-state condition. This motivated the develop-
ment of their quasi-dynamic TWI with a time-variable
upslope contributing area. They showed that the quasi-
dynamic index was in closer agreement with the measured
pattern of soil moisture storage than the traditional steady-
state TWI.
Notwithstanding these advancements, in Barling et al.

(1994) and successive studies, most of the developments in
TWI to date have focused on new ways to compute specific
upslope contributing area (O’Callaghan and Mark, 1984;
Quinn et al., 1991, Tarboton, 1997, Orlandini et al., 2003;
Seibert and McGlynn, 2007) or time-variable upslope
contributing area (Barling et al., 1994; Beven and Freer,
2001; Borga et al., 2002). Local slope, tanb, continued to
Copyright © 2011 John Wiley & Sons, Ltd.
be assumed a good surrogate to describe the local drainage
propensity.

One exception has been the development of the
downslope wetness index, or drainage efficiency index,
DWI = d / Ld, where Ld represents how far a particle of
water has to travel along its flow path to lose a given head
potential, d. Hjerdt et al. (2004) showed how this DWI
outperformed the standard topographic index for mapping
mire distribution in Sweden and approximating soil nitrate
patterns and soil depths in headwater catchments in the
USA. Nevertheless, the subsequent use of the downslope
index has shown equivocal results (e.g. Güntner et al.
2004; Grabs et al. 2009).

Clearly, the metrics of local slope need to be improved
to better approximate both upslope and downslope
controls on water flow, storage deficit and resulting
connectivity (i.e. the condition by which disparate wetter
zones on the watershed are linked via subsurface water
flow; e.g. Stieglitz et al., 2003) in the landscape. At
present, no theoretical approach exists for characterising
the relative role of upslope and downslope topography for
describing water flow path, connectivity and storage
across scales. Here we develop a new terrain-based index
to include the relative role of upslope and downslope
topography and (at least partially) overcome the limita-
tions found in traditional topographic indices. We present
a theoretical proof-of-concept analysis where the predic-
tions of the new index and several other topographic
indices are compared against patterns of water storage
deficit (or water table depth) provided by a physically
based model that describes the subsurface lateral flow
dynamics obtained by solving the BEq. We then explore
how gradients of pressure head, induced by the
downslope topography constraints, affect water storage
dynamics and flow pathways organisation. Our goal is to
preserve the simple formulation and low computational
demand that characterises the use of popular, terrain-
based indices, while at the same time combine elements
of the upslope and downslope topography that smooth the
Hydrol. Process. 25, 3909–3923 (2011)
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influence of terrain on water flow. We expand upon
Barling (1994) dynamic index concept to deal with past
issues of local slope, overestimation of local hydraulic
gradient (e.g. Crave and Gascuel-Odoux, 1997; Haitjema
and Mitchell-Bruker, 2005) and (nonphysical) fragmenta-
tion of the patterns (e.g. Lane et al., 2004; Sørensen and
Seibert, 2007), especially when high-resolution DEM are
analysed.
MATERIALS AND METHODS

Study site

Our study site is the 3.2-km2 Salei alpine catchment in
northern Italy. A 2-m resolution DEM (with a total of
791636 cells) of the Salei basin was developed from
LiDAR data.
The catchment elevation ranges from 1700 to 2400m

above sea level. The average slope is 30�, with a substantial
number of slopes that locally exceed 35�. A shallow sandy-
silt, nonlayered soil (varying in depth from a few centimetres
to 1–1.5m), with medium–high saturated hydraulic con-
ductivity (Ksat = 10

� 4m/s) and soil porosity f= 0.3m3m�3

(based on field observation by E. Farabegoli, personal
communication), covers the underlying bedrock. This
bedrock consists of poorly fractured volcaniclastic con-
glomerates throughout the entire basin area. Annual
precipitation is approximately 1000mm (source: Meteo
Trentino, Provincia Autonoma di Trento).
The catchment is characterised by two sub-basins, where

steep hillslopes converge in two main central hollows.
Topography represents a first-order control for soil
moisture patterns and subsurface flow paths as we have
geological field evidence (by E. Farabegoli, personal
communication) that transient water tables develop at the
soil–bedrock interface, generating relevant lateral flow
during rainfall events. Terrain-based indices are therefore
suitable to describe flow paths and storage dynamics at the
Salei catchment, as also reported and detailed in other
studies (Borga et al., 2008, and 2002; Tarolli et al., 2008;
Orlandini and Moretti, 2009).
The watershed has been also used for shallow landslide

studies (unpublished) by the authors of this article. A
comparison between patterns of slope instability predicted
by the SHALSTAB model (Montgomery and Dietrich,
1994), GEOtop (e.g. Rigon et al., 2006) and inventoried
landslide areas in the basin have highlighted the need to
describe the transient nature of the subsurface flow
mechanisms. The steady-state hypothesis used in SHAL-
STAB (similar to the TOPMODEL one) to simulate the
hydrological control (i.e. the water table spatial patterns) on
the triggering of shallow landslides leads to an overestimate
of slope instability in the basin and does not provide any
information on the critical rainfall duration (i.e. the minimum
rainfall duration needed to cause slope instability-e.g. Borga
et al., 2002). This motivated us to use the Salei basin for our
theoretical analysis and index development.
Figure 1 shows the basic hydrological attributes used to

define the new terrain-based index. Maps of the drainage
Copyright © 2011 John Wiley & Sons, Ltd.
directions (Figure 1a) were evaluated according to the
path-based single flow direction method of Orlandini et al.
(2003). This method was preferred over other methods (e.g.
Quinn et al., 1991; Tarboton, 1997; Seibert and McGlynn,
2007) because it was shown to provide a better
representation of flow paths across the surface of the Salei
basin (Orlandini and Moretti, 2009; Gallant and
Hutchinson, 2011). The drainage directions were coded
by using a number between 1 and 8. A value of 1 indicates
that the water particle moves eastward, a value of 2
indicates that the water particle moves northeasterly, and so
on, going counterclockwise.

The two-dimensional BEq model

We used the numerical model BEq of Cordano and Rigon
(submitted) to simulate flow paths, water table levels (i.e.
storage deficit) and connectivity across the Salei catchment
in response to three different rainfall events. The simulated
rainfall events were characterised by the rainfall intensity
(2, 4 and 8mm h�1, respectively) and the rainfall duration
(16, 16 and 8 h, respectively). These events correspond to
events with a return period of 1 to 10 years; therefore, they
can be considered ‘typical’ of the site.

The results were then used to compare the performance
of several terrain-based indices. The BEq model solves the
following two-dimensional form of the BEq (Bear, 1972):

Φ x; yð Þ @h
@t

¼ r Ksat x; y; zð Þc h; x; yð Þr!h
h i

þ Q x; yð Þ (2)

where h [L] is the hydraulic head (i.e. the water table
elevation) and c[L] is the pressure head, which is a
function of h and space: c=max(0, h� zb(x, y)), where
zb(x, y) [L] is the bedrock elevation, t [T] is the time, r �
is the divergence operator, ! is the space gradient
operator, Q(x, y)[LT�1] is a source term (e.g. the net
rainfall intensity), which also accounts for boundary
conditions (for instance the bedrock leakages), Ksat

[LT�1] is the saturated hydraulic conductivity and
Φ(x, y)[�] is the soil porosity. The BEq model integrates
each grid element, taking into account the local
variability of both topography and soil properties by a
subgrid parameterisation (for further information on the
numerical scheme, download BEq on http://www.geotop.
org/cgi-bin/moin.cgi/Boussinesq, or refer to Brugnano
and Casulli, 2009).

Unlike the KWeq, BEq does not neglect the diffusive
term (i.e. the gradient of the pressure head !c ) in the
governing equations. Such process representation is
therefore able to account for the enhancement or
impedance of local drainage by downslope topography
that has been generally neglected in previous studies (e.g.
Barling et al., 1994; Grabs et al., 2009), where topographic
indices were compared against patterns of water storage
from KWeq-based hydrological.

The setting of the terrain-based indices

The ability of the new wetness index TWI�d , defined
below to approximate the BEq-derived water table patterns,
Hydrol. Process. 25, 3909–3923 (2011)
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Figure 1. Maps of (a) topographic drainage directions, (b) local slope tanb and (c) upslope contributing area A of the Salei catchment. The upslope
contributing area is mapped as the natural logarithm of the area in square metre

Table II. The six terrain-based indices defined in this study and
their major features

Index Label Formulation Notes

1 TWI log A=b
tanb

� �
Steady-state upslope

contributing area by
D8-LTD; hydraulic
gradient = local
surface slope

2 TWId log A tð Þ=b
tanb

� �
Time-variable upslope

contributing area by
D8-LTD; hydraulic
gradient = local
surface slope

3 TWIDWI
d log A tð Þ=b

DWI

� �
Time-variable upslope

contributing area by
D8-LTD; hydraulic
gradient = downslope
index

4 TWI�d
1
9 TWId þ

P8
n¼1TWIdn

� �
As Index 2 with 3� 3

low-pass filter
5 TWI* 1

9 TWIþP8
n¼1TWIn

� �
As Index 1 with 3� 3

low-pass filter
6 TWImf log Amf =b

tanb

� �
Time-variable upslope

contributing area by
MF; hydraulic
gradient = local
surface slope
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was compared against the performance of five other
topographic indices (Table II).
Index 1 in Table II, TWI= log(a/tanb), is the traditional

topographic index (Beven and Kirkby, 1979) founded on the
assumption of steady-state and local parallelism between
ground and water table surfaces. It is defined as the natural
logarithmof the ratio between the specific upslope contributing
area a (here computed with the path-based single flow routing
algorithm D8-LTD of Orlandini et al., 2003) and the local
slope, tanb.
Index 2, TWId, is a dynamic topographic index, which

relaxes the hypothesis of steady state by considering a time
linear–variable upslope contributing area A(t). The scenario
shown in Figure 2 highlights the importance of considering
the time-variable upslope contributing area to describe
rainfall-runoff processes. In this example, two points, f and
b, are located along the same drainage path. Point b
(located downslope) presents a value of upslope contrib-
uting area larger than point f (Ab>Af). Irrespective of the
greater upslope contributing area, point b may actually be
‘recharged’ by a smaller area than point f during a rainfall
event of short duration because of the upslope geomorph-
ology. Hence, for a given duration Tc during a rainfall
event, the effective (time-variable) upslope contributing
area of point f, Af (t), may be larger than the effective
upslope contributing area of point b, Ab(t).
Copyright © 2011 John Wiley & Sons, Ltd. Hydrol. Process. 25, 3909–3923 (2011)



Figure 2. An example of time-variable upslope contributing area. Regardless of their steady-state upslope contributing area A, during a rainfall event the
effective (time-variable) upslope contributing area, Af(t), of a point f located upslope may be larger than the effective (time-variable) upslope contributing

area, Ab(t), of a point b located downslope along the same flow path
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We described the time-variable upslope contributing
area mathematically by using the following linear model:

Ai tð Þ ¼ t

tci
Ai for t≤tci

Ai tð Þ ¼ Ai for tci≤ t≤D

Ai tð Þ ¼ max 0;Ai 1þ D� t

tci

� �� �
for t≥D if tci≤Dð Þ

Ai tð Þ ¼ max 0;Ai
2D� t

tci

� �� �
for t≥D if tci≥Dð Þ

(3)

where Ai (t) and Ai are, respectively, the time-variable
upslope contributing area and the (steady-state) upslope
contributing area in a given location i, t [T] is the time,D [T]
is the rainfall duration and tci [T] is the time of concentration
of point i (i.e. the time required for a drop of water to travel
from the most hydrologically remote location in the
subcatchment to point i. Using Equation 3, the dynamic
topographic index TWIdi (Index 2 in Table II) in a generic
point i can be written as

TWIdi ¼ log
Ai tð Þ=bi
tanbi

� �
(4)

Equation 3 requires knowledge of tci for each point in a
catchment.
We evaluated tci as the maximum ratio between the flow-

path length and the celerity of water given by Darcy’s law:

tci ¼
lHj

cos alH j

� 	 � Φ
Ksat

" #
max

(5)

where alH j is the average inclination angle of a given flow
path, j, of horizontal length lHj , which converges in the
Copyright © 2011 John Wiley & Sons, Ltd.
generic watershed point i. If both soil porosity, Φ, and
saturated hydraulic conductivity, Ksat, are assumed constant
in space, then Equation 5 becomes

tci ¼
lHj

cos alH j

� 	
" #

max

� Φ
Ksat

¼ LHi �
Φ
Ksat

(6)

where LHi is a morphological ratio defining the longest flow
path of a water particle that converges at the generic
watershed point i.

By using the same Equation 3, we defined the TWIDWI
d

(Index 3 in Table II) by replacing the local slope, tan b,
with the downslope index, DWI, in Equation 4:

TWIDWI
di

¼ log
Ai tð Þ=bi
DWIi

� �
(7)

TWIDWI
d relaxes the hypothesis of parallelism between

ground and water table surfaces. Three values of d were
selected to define DWI: d= 2m, d= 5m and d = 10m. The
DWI for a generic point i was evaluated as the slope of the
line that connects the point i with the first point located
d-metres below the elevation of point i. This was carried
out by assuming that the drop of water travels along the
topographic drainage direction (Figure 3).

The new smoothed dynamic index TWI�d (Index 4 in
Table II), was obtained by applying a 3� 3 low-pass filter
to the map of the dynamic wetness index TWId (i.e. by
replacing the dynamic wetness index at cell i, TWIdi , with
the average value from the surrounding n-cells):

TWI�di ¼
1
9

TWIdi þ
X8
n¼1

TWIdn

 !
(8)
Hydrol. Process. 25, 3909–3923 (2011)



Figure 3. Value of DWI for a point i and three values of d (2, 5 and 10m).
The numbers inside cells are elevations (expressed in metres), arrows
represent topographic drainage directions and dl (2m) is the DEM

resolution
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The 3� 3 low-pass filter increases the spatial autocorrel-
ation of the terrain index by smoothing out local variations in
the spatial distribution of the dynamic wetness index TWId.
TWI* (Index 5 in Table II) is a modified version of the

traditional topographic index, where the 3� 3 low-pass
filter is applied on the TWI’s map to consider the effect of
nonlocal topography:

TWI� ¼ 1
9

TWIi þ
X8
n¼1

TWIn

 !
(9)

This index differs from Index 4 because it does not
remove the hypothesis of steady state.
The last index defined in this study is a second

‘traditional topographic index’ (TWImf, Index 6 in Table II),
where the upslope contributing area (Amf) was computed by
using the dispersive multiple flow direction algorithm of
Quinn et al. (1991):

TWImf ¼ log
Amf
i =bi
tanbi

 !
(10)

Amf is computed by distributing the incoming upslope flow
to every adjacent downslope cell on a slope-weighted basis.
This method has been shown to be able to improve the
computation of drainage areas and the description of flow
paths over morphologically divergent terrains (e.g.
Freeman, 1991; Quinn et al., 1991) where hydrodynamic
dispersion is generally highly relevant.
In the following sections, Index 1 (TWI) and Index 5

(TWImf) are termed ‘traditional nondispersive topographic
index TWI’ (because it was computed by using Orlandini’s
path-based single flow routing method) and ‘traditional
dispersive topographic index TWImf’ (because it was
computed by using Quinn’s dispersive multiple flow
routing method), respectively.

Performance criteria

The goal of our theoretical analysis was to assess the
ability of the six wetness indices to reproduce water table
Copyright © 2011 John Wiley & Sons, Ltd.
fluctuation (i.e. dynamics of water storage deficit) and
subsurface flow paths derived from the physically based
BEq model. Specifically, we tested the ability of each index
to generate a clear contrast between wetter and drier zones.
We used a spatially uniform representation of rainfall,
hydraulic conductivity and soil porosity to run the BEq
model to obtain predictions only affected by topography.
The results are an emerging property of the model
simulation and can be consistently compared with the
spatial distribution of the terrain-based wetness indices
defined in Table II.

Two approaches were used to compare wetness patterns
derived from the BEq model with those derived from our
terrain-based wetness indices. For the first approach
(approach 1), reclassified binary maps with specific
threshold values were used to differentiate between wetter
and drier zones. For the second approach (approach 2),
continuous data of terrain indices and water table levels
(i.e. deficit of storage, according to TOPMODEL) derived
by the BEq model were used. By using two different
approaches, we were able to verify that our results were not
dependent on the particular method used to classify the
patterns of storage (binary versus continuous data). Six
statistical measures were used to identify the level of
similarity between wetness indices and simulated patterns
of wetness/dryness: five similarity coefficients were used to
assess the level of similarity in approach 1, whereas
Spearman’s rank correlation coefficient (Spearman, 1904)
was used to assess the level of map similarity in approach
2.

To reclassify the original maps into binary (wetter/drier)
maps, we rearranged the spatial distribution of values
above or below a given threshold value by coding each
value as an indicator function I(zi ; zk):

I zi; zkð Þ ¼ 1 if zi≥zk
I zi; zkð Þ ¼ 0 if zi < zk

(11)

where zi is the value of wetness index or water table level
in point i, and zk is the threshold value that separates the
drier areas from the wetter ones.

A second indicator datum
�
I zi; zkð Þ (such that

�
I zi; zkð Þ ¼ 0

if zi≥ zk and
�
I zi; zkð Þ ¼ 1 if zi< zk) was also defined to

guarantee the following condition:X
N

I zi; zkð Þ þ
�
I zi; zkð Þ ¼ N (12)

where N is the total number of cells in the raster map. We
used the 75th percentiles of the individual empirical
cumulative distribution functions (ECDFs) to define the
threshold value zk and to separate the wetter areas from the
drier ones. For comparison, we also used the 25th
percentiles as indicator threshold zk to assess the ability
of the different terrain indices to include topographic
divergent areas among the wetter zones.

The similarity coefficients used to assess the level of
similarity of the binary maps (approach 1) are summarised
in Table III (the case of the traditional topographic index
Hydrol. Process. 25, 3909–3923 (2011)
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TWI is there reported). The overall probability of random
agreement, RA, which appears in Cohen’s kappa coeffi-
cient (Ck) is given by

RA ¼
PN
i¼1

I TWIi;TWI75thð Þ
N

�
PN
i¼1

I ci;c75thð Þ
N

þ
PN
i¼1�

I TWIi;TWI75thð Þ
N

�
PN
i¼1�

I ci;c75thð Þ
N

(13)

These five coefficients have been used in several similar
studies (e.g. Rodhe and Seibert, 1999; Güntner et al., 2004;
Grabs et al., 2009). l and n represent, respectively, the
proportion of false-negative cases (i.e. the rate of occurrence
to predict a ‘drier’ area when the BEq results in being a
‘wetter’ area) and false-positive cases (i.e. the rate of
occurrence to predict a ‘wetter’ area when the BEq results in
being a ‘drier’ area). The simple-matching (SM) coefficient
specifies the percentage of catchment points where both the
topographic index and the BEq-derived water-table depth
(or storage deficit) predict values larger than their respective
threshold values zk. SC is a measure of direct spatial
coincidence, and Ck (Cohen, 1960) is a coefficient able to
take into account the agreement occurring by chance.
A modified version of the Hoshen–Kopelman algorithm

(Hoshen et al., 1997) was used to compute the number of
‘wetter clusters’ (i.e. spatial aggregates of value above the
threshold zk that separates the drier areas from the wetter
ones) in the binary maps of the different terrain indices. We
also determined the size of the ‘wetter clusters’ and their
cumulative distribution function (ECDFsize). This was
performed to assess the capacity of the different terrain
indices (i) to separate wetter areas from surrounding drier
areas and (ii) to reproduce the size of the isolated wetter
clusters provided by the BEq model. The rationale behind
this is that a high number of isolated clusters indicates
limited ability of the wetness index to clearly separate the
wetter areas from the drier areas.
Table III. An overview of the applied similarity co

Similarity coefficient

l
PN

i¼1�
IðPN

i¼1
I TWIi;TWI75thð Þ�I cð

m

PN

i¼1
I TðPN

i¼1
I TWIi;TWI75thð Þ�

�
I cð

SM

PN

i¼1
I TWIi;TWI75thð Þ�I cið

SC
PN

i¼1
I TWIi;TWI75thð Þ�I cðPN

i¼1
I ci;c75thð Þ

Ck SM�RA
1�RA

The case of the traditional dispersive TWI index is reported here.

Copyright © 2011 John Wiley & Sons, Ltd.
RESULTS

The role of the diffusive term

The BEq model simulated the water-table depth (i.e. the
water storage deficit) at each point in the Salei basin during
the investigated rainfall events. We only present results of a
16-h-long, 4-mm h�1 intense rainfall event because the
qualitative results were the same for the other simulated
rainfalls (a 16-h-long, 2-mm h�1 intense rainfall and an
8-h-long, 6-mm h�1 intense rainfall).

Figure 4 plots the drainage directions from the BEq-
derived water-table surface ( ! zb þ cð Þ ) against the
direction of the terrain gradient (or local slope) ! zbð Þ .
The four graphs refer to the 1st (top-left), 6th (top-right),
11th (bottom-left) and 16th hour (bottom-right) from the
onset of rainfall. In Figure 4, the direction of ! zb þ cð Þ
was derived by using Orlandini’s single flow path
algorithm. The sizes of the circles indicate the percentage
of catchment points characterised by a given pair of water
table (in abscissa) and topographic drainage (in ordinate)
directions. The red diagonal contains the percentage of
catchment points where ! zb þ cð Þ and ! zbð Þ present the
same direction, whereas circles outside this diagonal
represent the percentage of points where there is no
coincidence.

The four graphs show that the direction of ! zb þ cð Þ
equals the direction of ! zbð Þ (i.e. that ! cð Þ ¼ 0) in only
16% of the catchment-points, and that in many cases, the
BEq-derived flow direction did not follow the topographic
paths. In fact, although the topographic surface tended to
establish three main drainage directions (northeast
direction, southwest direction and southeast direction in
91.7% of cases), the direction of the subsurface flow (from
the BEq model) resulted in a more complex variability
across the watershed. The BEq-derived flow paths also
exhibited a temporal variability induced by dynamic soil–
water potential effects not captured by the static
topography. Given that the flow directions are time
variable, then the local values of storage deficit are also
time variable.
efficients (approach 1) and their theoretical range
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11h 16h

Figure 4. The direction of BEq-derived water table gradient! zb þ cð Þ against the direction of the topographic surface gradient! zbð Þ. Directions are coded
with numbers ranging from 1 (east direction) to 8 (southeast direction), going counterclockwise. The percentages in the left and bottom inside margins of the
plots represent the percentage of points characterised by a given value of water table drainage direction and topographic surface drainage direction, respectively
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Figure 5 shows this effect of diffusive processes for a
transect approximately perpendicular to the general
direction of the topographic hollows (that can be
considered representative of each other transect having
the same direction). Along the transect, the surface
topography and the BEq-derived water table surface were
generally not parallel, particularly where the downslope
topography induced backwater effects. A wedge of
saturation developed near the topographic hollows and
moved upslope from the foot of the slopes (points 1 and 2
noted on the transect of Figure 5b), inducing larger storage
b)

0

1100 m
a)

Figure 5. Two-dimensional transect of Salei catchment and simulated water-t
transect reported in panel b. Low water storage deficit is observed near to

topography prevents th

Copyright © 2011 John Wiley & Sons, Ltd.
in zones close to the hollows. Low saturation deficits were
also present at some locations far from the hollows (e.g. at
point 3), where downslope topographic reliefs limit the
release of water from areas located upslope.

The performance of the terrain indices

Binary maps analysis (approach 1). Indicator map
derivation showed that the smoothed dynamic topographic
index TWI�d was able to reproduce the dynamics of storage
(or water table depth) generated by the BEq model better
than the other wetness indices listed in Table II. The visual
able level by BEq model. The red line in panel a shows the position of the
pographic hollows at the foot slope and where the irregular downslope
e free water drainage

Hydrol. Process. 25, 3909–3923 (2011)
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comparison among the five maps in Figure 8 allows a
preliminary qualitative assessment of pattern similarity.
This comparison indicates that TWI�d (Figure 6d) is the
most convincing index in describing similarity with the
BEq-derived water storage patterns (Figure 6e).
The temporal evolution of the similarity coefficients l, n,

SM, SC and Ck between binary-coded terrain indices and
simulated water table level are summarised in Tables IV
and V. Table IV refers to zk = 75th percentile (i.e. the 75th
percentile of the individual cumulative distribution func-
tions was used as a threshold to separate wetter and drier
areas), whereas Table V refers to zk = 25th percentile of the
ECDFs. TWId approximated the BEq-derived storage
deficit (or water table depth) most accurately during the
first and second rainfall hours (values in bold face),
whereas TWI�d performed better in subsequent hours if
wetter and drier areas were separated by using zk = 75th
percentile. TWImf was better able to approximate the BEq-
derived wetter areas during the first five rainfall hours with
zk = 25th percentile of the individual ECDFs, whereasTWI�d
outperformed the other indices in the subsequent hours.
The traditional dispersive topographic index TWI

consistently performed worse than the other indices in
both cases (zk = 25th percentile and zk = 75th percentile of
ECDFs), confirming the need to relax the steady-state
assumption and to consider nonlocal factors (e.g. nonlocal
topography) in describing the local drainage and storage
dynamics. Tables IV and V also show that the similarity
between TWI-BEq and TWId-BEq slightly decreases after
the eighth rainfall hour, whereas the similarity between
TWImf-BEq and TWI�d-BEq continued to increase until the
last simulated hour when the diffusive processes are
expected to become more relevant and the patterns of
soil–water are highly connected and organised.

Spearman rank analysis (approach 2). In this second
approach, Spearman’s rank correlation coefficient r
(Spearman, 1904) was used to assess the level of similarity
Figure 6. Spatial patterns of the (a) traditional ‘nondispersive’ topographic in
topographic index TWImf, (d) smoothed dynamic topographic index TWId

* a
lower than the 75th percentile, and in black the points higher than the

Copyright © 2011 John Wiley & Sons, Ltd.
between terrain index and BEq-derived patterns of storage
deficit (or water table depth).

Figure 7a shows the shift in performance of the dynamic
TWId index and the smoothed dynamic TWI�d index (first
2 h versus the remaining), confirming the results obtained
with approach 1 and zk = 75th percentile of the ECDFs
(Table IV).

The dynamic topographic index defined by using the
downslope index (DWI) and d= 2m was the best index to
approximate the BEq-derived patterns of storage deficit
during the first three rainfall hours (Figure 7a). However,
the use of downslope index, DWI, instead of local slope,
tanb, reduced the ability of the dynamic index to reproduce
the simulated water-table levels (TWIDWI

d less effective than
TWId), especially when the higher values of d (5 and 10m)
were used to derive the DWI.

The traditional topographic index TWI was generally
recognised as the least performing index, confirming what
we found with approach 1. The performance of the terrain
indices increased when the steady-state hypothesis was
relaxed (TWId better than TWI, with an average increase of
Spearman’s coefficient equal to �Δr ¼ þ9%) and when the
low-pass filter was applied to the dynamic topographic
indices TWId (TWI�d better than TWId with �Δr ¼ þ17%).

Figure 7b shows that the ability of topographic indices to
reproduce the patterns of soil–water storage deficit derived
with the BEq model improved when the low-pass filter was
used to smooth out local variations (TWI* better than TWI,
and TWI�d better than TWId). The traditional dispersive
topographic index TWImf performed similarly to the
smoothed traditional dispersive index TWI* only from
the 11th rainfall hour, when a considerable number of
divergent areas also exhibited low saturation deficit.
Figure 7b also shows that after the 8th rainfall hour
Spearman’s correlation coefficient r associated with TWId
slightly decreases, whereas Spearman’s correlation coeffi-
cient r associated with TWI�d increases to remain steady
after the 13th hour. Besides, Spearman’s correlation
dex TWI, (b) dynamic topographic index TWId, (c) traditional ‘dispersive’
nd (e) BEq-derived water table levels. The maps show in grey the points
75th percentile of the individual cumulative distribution functions

Hydrol. Process. 25, 3909–3923 (2011)



Table IV. Similarity coefficients between reclassified binary maps of wetness indices (TWI, TWImf, TWId and TWId
*) and simulated

water table depth (or storage deficit) by BEq model with zk = 75th percentile of the individual cumulative distribution functions

zk= 75% Label

Hour of imulation

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

l TWI 0.18 0.18 0.17 0.17 0.17 0.17 0.17 0.17 0.17 0.17 0.17 0.17 0.17 0.17 0.17 0.17
TWImf 0.19 0.18 0.17 0.17 0.16 0.16 0.16 0.16 0.16 0.15 0.15 0.15 0.15 0.15 0.15 0.15
TWId 0.16 0.15 0.15 0.14 0.14 0.14 0.14 0.14 0.14 0.14 0.14 0.14 0.14 0.14 0.15 0.15
TWId

* 0.16 0.15 0.14 0.14 0.13 0.13 0.12 0.12 0.12 0.12 0.12 0.12 0.12 0.12 0.11 0.11
n TWI 0.55 0.53 0.52 0.51 0.50 0.50 0.51 0.51 0.51 0.51 0.51 0.51 0.51 0.51 0.51 0.51

TWImf 0.57 0.54 0.52 0.50 0.49 0.48 0.48 0.47 0.47 0.46 0.46 0.46 0.46 0.46 0.46 0.45
TWId 0.48 0.46 0.44 0.43 0.42 0.42 0.42 0.42 0.42 0.42 0.43 0.43 0.43 0.44 0.44 0.44
TWId

* 0.49 0.46 0.43 0.41 0.39 0.38 0.37 0.37 0.36 0.36 0.36 0.36 0.36 0.36 0.35 0.35
SC TWI 0.45 0.47 0.48 0.49 0.49 0.49 0.49 0.49 0.49 0.49 0.49 0.49 0.49 0.49 0.48 0.48

TWImf 0.43 0.46 0.48 0.49 0.51 0.52 0.52 0.53 0.53 0.54 0.54 0.54 0.54 0.54 0.54 0.54
TWId 0.52 0.54 0.56 0.57 0.58 0.58 0.58 0.58 0.58 0.58 0.57 0.57 0.57 0.56 0.56 0.55
TWId

* 0.51 0.54 0.57 0.59 0.60 0.62 0.63 0.64 0.64 0.64 0.64 0.64 0.64 0.64 0.64 0.64
SM TWI 0.72 0.73 0.74 0.74 0.75 0.75 0.75 0.75 0.75 0.75 0.74 0.74 0.74 0.74 0.74 0.74

TWImf 0.71 0.73 0.74 0.75 0.76 0.76 0.76 0.76 0.77 0.77 0.77 0.77 0.77 0.77 0.77 0.77
TWId 0.76 0.77 0.78 0.79 0.79 0.79 0.79 0.79 0.79 0.79 0.79 0.79 0.78 0.78 0.78 0.78
TWId

* 0.75 0.77 0.78 0.79 0.8 0.81 0.81 0.82 0.82 0.82 0.82 0.82 0.82 0.82 0.82 0.82
Ck TWI 0.27 0.29 0.31 0.32 0.33 0.33 0.33 0.33 0.33 0.32 0.32 0.32 0.32 0.31 0.31 0.31

TWImf 0.24 0.28 0.31 0.33 0.35 0.36 0.37 0.37 0.38 0.38 0.39 0.39 0.39 0.39 0.39 0.40
TWId 0.36 0.39 0.42 0.43 0.44 0.45 0.45 0.44 0.44 0.44 0.43 0.43 0.42 0.42 0.41 0.41
TWId

* 0.34 0.38 0.42 0.45 0.48 0.49 0.50 0.51 0.52 0.52 0.53 0.53 0.53 0.53 0.53 0.53

Values in bold represent the best index at a given rainfall hour.
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coefficient r associated with TWI�d exceeded 0.7 after the
8th rainfall hour (approximately), indicating that the
agreement between the index pattern and the simulated
water table (or water storage deficit) pattern was good.

Connectivity analysis. The smoothed wetness indexTWI�d
and the traditional dispersive topographic index TWImf
Table V. Similarity coefficients between reclassified binary maps o
water table depth (or storage deficit) by BEq model with zk = 25t

zk= 25% Label 1 2 3 4 5 6 7

l TWI / 0.58 0.56 0.53 0.49 0.48 0.48
TWImf / 0.56 0.53 0.48 0.43 0.41 0.40
TWId / 0.58 0.54 0.50 0.47 0.45 0.44
TWId

* / 0.60 0.56 0.50 0.44 0.41 0.39
n TWI 0.25 0.19 0.19 0.18 0.17 0.16 0.16

TWImf 0.25 0.19 0.18 0.16 0.14 0.14 0.13
TWId 0.25 0.19 0.18 0.17 0.16 0.15 0.15
TWId

* 0.25 0.20 0.19 0.17 0.15 0.14 0.13
SC TWI 0.75 0.80 0.81 0.82 0.83 0.84 0.84

TWImf 0.75 0.81 0.82 0.84 0.85 0.86 0.87
TWId 0.75 0.80 0.81 0.83 0.84 0.85 0.85
TWId

* 0.75 0.80 0.81 0.83 0.85 0.86 0.87
SM TWI 0.75 0.70 0.72 0.74 0.75 0.76 0.76

TWImf 0.75 0.72 0.73 0.76 0.78 0.79 0.80
TWId 0.75 0.71 0.73 0.75 0.77 0.77 0.78
TWId

* 0.75 0.70 0.72 0.75 0.79 0.80 0.80
Ck TWI 0 0.22 0.26 0.30 0.34 0.35 0.36

TWImf 0 0.25 0.29 0.36 0.42 0.45 0.46
TWId 0 0.22 0.27 0.33 0.37 0.40 0.41
TWId

* 0 0.20 0.25 0.34 0.41 0.45 0.48

Values in bold represent the best index at a given rainfall hour.

Copyright © 2011 John Wiley & Sons, Ltd.
showed better ability to generate a clear contrast between
wetter and drier areas than the dynamic TWId index and the
traditional nondispersive topographic TWI index (Figure 6).
The analysis of the wetness patterns predicted by each of
the wetness indices and the BEq model revealed that the
number of wetter clusters (i.e. spatial aggregates of values
larger that the threshold value zk) generated by TWI�d and
f wetness indices (TWI, TWImf, TWId and TWId
*) and simulated

h percentile of the individual cumulative distribution functions

Hour of simulation

8 9 10 11 12 13 14 15 16

0.48 0.48 0.48 0.48 0.48 0.48 0.48 0.48 0.48
0.39 0.39 0.38 0.38 0.37 0.36 0.36 0.36 0.36
0.44 0.44 0.45 0.45 0.46 0.46 0.47 0.47 0.48
0.38 0.37 0.36 0.36 0.35 0.35 0.35 0.35 0.35
0.16 0.16 0.16 0.16 0.16 0.16 0.16 0.16 0.16
0.13 0.13 0.13 0.12 0.12 0.12 0.12 0.12 0.12
0.15 0.15 0.15 0.15 0.15 0.15 0.16 0.16 0.16
0.13 0.12 0.12 0.12 0.12 0.12 0.12 0.12 0.12
0.84 0.84 0.84 0.84 0.84 0.84 0.84 0.84 0.84
0.87 0.87 0.87 0.87 0.88 0.88 0.88 0.88 0.88
0.85 0.85 0.85 0.85 0.85 0.85 0.84 0.84 0.84
0.87 0.88 0.88 0.88 0.88 0.88 0.88 0.88 0.88
0.76 0.76 0.76 0.76 0.76 0.76 0.76 0.76 0.76
0.80 0.81 0.81 0.81 0.82 0.82 0.82 0.82 0.82
0.78 0.78 0.78 0.77 0.77 0.77 0.77 0.76 0.76
0.81 0.82 0.82 0.82 0.82 0.82 0.82 0.83 0.83
0.36 0.36 0.36 0.36 0.36 0.36 0.36 0.36 0.35
0.47 0.48 0.49 0.5 0.51 0.51 0.52 0.52 0.52
0.41 0.41 0.40 0.40 0.39 0.38 0.38 0.37 0.36
0.49 0.51 0.52 0.52 0.53 0.53 0.53 0.53 0.53
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Figure 7. On the left, temporal evolution of Spearman’s rank correlation coefficient r between simulated water table level and traditional nondispersive
topographic index, TWI (blue), dynamic topographic index, TWId (red), smoothed dynamic topographic index, TWI*d (black), and dynamic index where
the DWI is used to describe the local drainage, TWId

DWI (green). On the right, the role played by the low-pass filter on the terrain indices performance
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TWImf was very close to the number of BEq-derived wetter
clusters (Figure 8, rightmost bars-block). However,
although the TWImf index generated connected patterns
of wetter clusters too large, the TWI�d index proved able to
reproduce both the number of wetter clusters and the spatial
aggregation of water storage patterns. In fact, the wetter
clusters distribution from TWI�d showed statistical
properties (mean and quantiles values) that were in good
agreement with the statistical properties of the BEq-derived
wetter clusters distribution (Figure 8,first to fourth bars-
blocks versus dashed lines).
TWI and TWI* overestimated the fragmentation of the

wetness areas, whereas the DWI-derived dynamic wetness
index, TWIDWI

d (not reported in Figure 8), overestimated the
clusters spatial extension and underestimated the number of
clusters for high values of ‘loss of elevation’ d (5 and 10m)
and, vice versa, underestimated the clusters spatial extension
and overestimated the number of clusters for d = 2m.
Figure 8. Bar plots showing the ability of the different terrain indices to
reproduce connected ‘wetter’ areas. The rightmost bars-block represent the
number of isolated ‘wetter’ clusters provided by the five (TWI, TWI*,
TWImf, TWId and TWId

*) terrain indices (bars) and the BEq model (dashed
line). The first, second, third and fourth bars-blocks represent the 1st
quantile, 2nd quantile, mean and 3rd quantile values of the individual

cumulative distribution functions of the ‘wetter’ cluster sizes

Copyright © 2011 John Wiley & Sons, Ltd.
DISCUSSION

On the relative role of upslope and downslope topography for
describing water flow path, connectivity and storage dynamics

The use of a TWI for distributing soil–water storage
imposes an inherent assumption about the controlling
processes on subsurface flow dynamics, namely, that
subsurface lateral flow dominates (e.g. Grayson et al.,
1997). The results of our theoretical analysis have shown
that diffusive, pressure related, processes can significantly
affect the subsurface lateral flow dynamics (Figures 4 and
5) and that the traditional topographic index alone is a poor
proxy for describing subsurface flow paths and storage
dynamics over complex topography. The steady-state
assumption, which implies that the storage deficit at any
point in a catchment is influenced by the total upslope
contributing area, and the kinematic-wave theory, whereby
the effects of disturbance can only propagate in a
downslope direction, limit the ability of the traditional
TWI index to describe storage dynamics in topographically
complex, lateral flow-dominated mountain catchments.

Water storage deficit at a given location may in fact be
strongly controlled by the downslope topography. Very
steep and planar downslope topography enhances the
local drainage, independently of the local value of the
ratio between upslope contributing area and local slope.
On the other hand, an abrupt decrease in slope angle or
the presence of micro-topographic reliefs may prevent
the free water drainage, inducing backwater effects. A
saturation wedge may also develop at the foot of the
hillslope and affect the upslope storage dynamics for a
length depending upon the incoming flux from upslope
(Hewlett and Hibbert, 1963; Weyman, 1973, 1974). This
mechanism can be intimately related to the hydrological
connectivity between the topographic channel and the
surrounding hillslopes, and it is not considered at all in
the TWI index where downslope controls on local
drainage are neglected. Therefore, rainfall-runoff models
on the basis of the traditional topographic index to
describe the lateral subsurface flow component (i.e. the
balance between the incoming upslope flow and the
outgoing downslope flow) are not able to fully represent
storage dynamics, at least for the right reasons, where
Hydrol. Process. 25, 3909–3923 (2011)
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downslope topography and soil water potential effects
play an important role in controlling the local drainage.
On the need for hydrological smearing

None of the six terrain indices tested in this study were
able to perfectly reproduce the dynamics of storage derived
from the Boussinesq model. This is because none of them
perfectly captures the hydrodynamic processes induced by
the irregular and complex topography. The downslope
index DWI attempts to include elements of the downslope
topography to describe the local drainage propensity.
However, our results have shown that the DWI is difficult
to apply in practice. The effective value of d (loss of
elevation), a crucial element of the DWI method, must be
chosen by trial and error—as a single value for the entire
watershed—based on what local micro-topographic fea-
tures (i.e. local irregularities) must be filtered out.
Therefore, the value of d changes as a function of local
morphology and is not a topological property of a basin.
The traditional dispersive topographic index TWImf

attempts to include the hydrodynamic processes by
distributing the incoming flow (i.e. the routed upslope
contributing area) to a point among the neighbouring cells
at a lower elevation. This enabled it to better estimate water
storage in divergent areas (Table V), but at the same time,
TWImf showed poor performance with respect to the other
tested quality measures (and specifically Spearman’s
correlation coefficient analysis and connectivity analysis).
Orlandini and Moretti (2009) showed that multiple flow
direction algorithms are not able to delineate the morpho-
logical drainage system because physical dispersion
inherent in transport processes across the topographic
surface may not obey the same laws as artificial dispersion.
Our results support their findings by showing that a 3� 3
low-pass filter applied on the traditional nondispersive TWI
index was sufficient to outperform the dispersive TWImf

index in approximating the BEq-derived water storage
dynamics. In particular, TWImf showed small differences
between convergent and divergent areas in the first rainfall
hours when ‘wetter’ cells were primarily areas of flow
convergence (Figure 6, Table IV). This confirmed that
multiple flow direction algorithms suffer from too high flow
dispersion (Seibert andMcGlynn, 2007), making it unable to
reproduce subsurface flow paths in convergent areas.
Fine DEM grids create challenges for the TWI. Small-

scale topographic ‘noise’ generates high spatial variability
in the ratio between upslope contributing area and local
slope, reducing the ability of topographic index-based
rainfall-runoff models to predict spatial patterns and
dynamics of water storage. The problem has been noted
by other researchers. For instance, Sørensen and Seibert
(2007) argued that the water table shape may be smoother
than the land surface topography and may be related more
accurately to a coarse resolution DEM than to a finer
resolution DEM. Wolock and Price (1994) concluded that
coarse resolution DEMs were preferable to run the
topographic index-based TOPMODEL as the predicted
water-table shape may be better represented by a coarser
Copyright © 2011 John Wiley & Sons, Ltd.
resolution DEM. Lane et al. (2004) showed results that
could be considered similar to ours. They argued that when
fine-resolution DEMs are used to run TOPMODEL, a large
number of unconnected saturated areas are produced. This
is similar to our findings of high disaggregation of points
observed in the traditional nondispersive topographic index
TWI and the dynamic index TWId (Figures 6a and 6b).

The values of upslope contributing areas for the Salei
basin were greatly affected by the DEM resolution
(confirming results by Sørensen and Seibert, 2007). For
example, the percentage of basin points having an upslope
contributing area larger than 160m2 increased from 18% at
2-m resolution to 70% at 10-m resolution DEM. Therefore,
the coarse 10-m scale remains inappropriate to delineate
water flow paths. In fact, our smoothed dynamic index
TWI�d was poorly correlated with the BEq-derived storage
deficit patterns when applied to this 10-m resolution DEM,
indicating that a fine-resolution DEM is a necessary
element to compute our TWI�d and appropriates times of
concentration tc. The 3� 3 low-pass filter subsequently
applied to the dynamic topographic index maps mitigated
the effects of local irregularities in topography and allowed
us to include nonlocal topographic effects in the terrain
index computation. This resulted in less fragmented and
more robust patterns of wetness (Figure 6).

We found that the smearing process also allowed the
reduction of the differences in the upslope contributing area
between points near and points inside topographic hollows
(spatial-threshold effect). Figure 9 provides a schematic
representation of this spatial-threshold effect at the
hillslope/channel transition. On ‘digital terrain’, points
inside topographic hollows show values of upslope
contributing area that are much higher than points
immediately upslope. This effect is in contrast with the
results of the BEq model (Figure 5), which showed a
similar water-storage propensity for topographic positions
close to and inside the topographic hollows. In fact, as
discussed earlier, in points close to the hollows, local water
storage is strongly controlled by the development of a
saturated wedge that progressively expands in the upslope
direction. As a result, locations near topographic hollows
may receive drainage not only from areas that are directly
upslope from them but downslope from them too.

Our smoothed dynamic index TWI�d has proven more
capable to include these phenomena than existing topo-
graphic indices. However, it remains a terrain-derived
index and as such can be used to describe the dynamics of
storage only when topography (i.e. lateral subsurface flow)
is recognised as the predominant control on subsurface
flow mechanisms. Under different landscape contexts from
those analysed in this article, storage dynamics and soil–
moisture patterns can be dominated by other factors, such
as soil drainability (Tetzlaff et al., 2009a), vegetation and
microclimate (Western et al., 2004) and bedrock geology,
where a realistic representation of storage patterns and
storage dynamics cannot be achieved by using a solely
terrain-based wetness index. In these cases, appropriate
procedures should be used to select the requisite level of
hydrological model complexity able to represent the
Hydrol. Process. 25, 3909–3923 (2011)



Figure 9. Conceptual representation of the threshold effect on the value of upslope contributing area at the hillslope/channel transition of digitised
watersheds. The point inside the topographic hollow shows a value of upslope contributing area A much higher than a points located one pixel upslope
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dominant processes (Fenicia et al., 2008), consistent with
empirical observations (Birkel et al., 2010, and 2011).
CONCLUDING REMARKS

The position of the water table and the storage deficit below
saturation at a given point in a watershed is the result of a
balance between upslope accumulation of water, downslope
drainage efficiency and vertical recharge from the unsatur-
ated zone—all interplaying with the complexities of bedrock
surface and permeability below. In a context where lateral
flow in the soil layer dominates, we showed that downslope
topography significantly affects the propensity of a point to
retain or release water and therefore alters the flow and
storage dynamics of upslope points. Our analysis allowed us
(i) to examine the relative effects of advective (i.e.
topographic) and diffusive (pressure dependent) flow
processes by using a physically based BEq solver and (ii)
to test the ability of several terrain-based wetness indices to
approximate the BEq-derived water storage dynamics.
We showed that locally computed topographic wetness

indices were not able to account for the role that complex
topography plays on storage dynamics. Specifically, they were
not able to represent the effect of downslope topography on
upslope water flow. Results also highlighted the need to relax
the steady-state assumption on which traditional topographic
indices are based.Our new terrain index (TWId) applies a 3� 3
low-pass filter to the dynamic index of Barling et al. (1994) to
smooth out the effects of local topography and grid influence
on water flow paths (i.e. the artefacts on flow paths connected
to the use of a regular grid) and, ultimately, to derive a
smoothed dynamic terrain index ( TWI�d ). Our statistical
comparison showed that TWI�d outperformed previous indices
when working with high-resolution DEMs, resulting in a less
Copyright © 2011 John Wiley & Sons, Ltd.
fragmented and disconnected water table configuration. This
was achieved without losing the accuracy afforded by high-
resolution DEMs to describe drainage paths and upslope
accumulated area. Moreover, because the TWI�d uses the
concept of time-variable upslope contributing area, it is not
limited by a single value, monotonic function between
groundwater storage and runoff production.

Because many rainfall-runoff models rely upon these
indices to cope with the spatial distribution and the
dynamics of soil–water storage in a catchment, our new
TWI�d index may be a better alternative to the traditional
topographic index in describing subsurface flow processes,
at least where topography (i.e. lateral flow) is recognised as
the predominant control for subsurface flow mechanisms.
ACKNOWLEDGEMENTS

The authors thank T. Garland and E. Cordano for their
comments on an earlier draft. E. Farabegoli and A. Vigano
are thanked for their field work and for providing useful
information in the geological context. The authors also
thank S. Orlandini, G. Moretti and M. Borga for helpful
discussions. They are grateful to the three anonymous
reviewers for comments that improved the quality of this
manuscript. All the codes presented in the article were
implemented in R and are freely available by contacting the
first author (cristiano.lanni@gmail.com).
REFERENCES

Barling RD, Moore ID, Grayson RB. 1994. A quasi-dynamic wetness
index for characterizing the spatial distribution of zones of surface
saturation and soil water content. Water Resources Research 30(4):
1029–1044. DOI: 10.1029/93WR03346.
Hydrol. Process. 25, 3909–3923 (2011)



3922 C. LANNI, J. J MCDONNELL AND R. RIGON
Bear J. 1972. Dynamics of Fluids in Porous Materials. Elsevier: New York
(reprinted by Dover Publications, 1988).

Beven KJ, Kirkby MJ. 1979. A physically based variable contributing
area model of basin hydrology. Hydrology Science Bulletin 24(1):
43–69.

Beven K, Freer J. 2001. A dynamic TOPMODEL. Hydrological
Processes 15: 1993–2011. DOI: 10.1002/hyp.252.

Birkel C, Tetzlaff D, Dunn SM, Soulsby C. 2010. Towards simple
dynamic process conceptualization in rainfall runoff models using
multi-criteria calibration and tracers in temperate, upland catchments.
Hydrological Processes 24: 260–275.

Birkel C, Tetzlaff D, Dunn SM, Soulsby C. 2011. Using time domain and
geographic source tracers to conceptualise streamflow generation
processes in lumped rainfall-runoff models. Water Resources Research
47: W02515. DOI: 10.1029/2010WR009547.

Borga M, Dalla Fontana G, Cazorzi F. 2002. Analysis of topographic
and climatologic control on rainfall-triggered shallow landsliding
using a quasi-dynamic wetness index. Journal of Hydrology 268:
56–71.

Borga M, Dalla Fontana, G, Da Ros D, Marchi L. 1998. Shallow landslide
hazard assessment using a physically based model and digital elevation
data. Environmental Geology 35(2): 81–88. DOI: 10.1007/
s002540050295.

Brugnano L, Casulli V. 2009. Iterative Solution of Piecewise Linear
Systems and Applications to Flows in Porous Media. SIAM Journal on
Scientific Computing 31: 1858–1873.

Burt TP, Butcher DP. 1986. Development of topographic indices for use
in semi-distributed hillslope runoff models. Zeitschrift für Geomorpho-
logie 58: 1–19.

Burt TP, Butcher DP. 1985. Topographic controls of soil moisture
distributions. Journal of Soil Science 36: 469–486.

Carson MA, Kirkby MJ. 1972. Hillslope form and process. University
Press: Cambridge, England; 475.

Cohen J. 1960. A coefficient of agreement for nominal scales. Educational
and Psychological Measurement 20: 37–46.

Cordano E, Rigon R. submitted. A mass-conservative method for the
integration of the two-dimensional groundwater (Boussinesq) equation.
Water Resources Research.

Crave A, Gascuel-Odoux C. 1997. The influence of topography on time
and space distribution of soil surface water content. Hydrological
Processes 11: 203–210.

Fenicia F, McDonnell JJ, Savenije HHG. 2008. Learning from model
improvement: On the contribution of complementary data to process
understanding. Water Resources Research 44: W06419. DOI: 10.1029/
2007WR006386.

Freeman TG. 1991. Calculating catchment area with divergent flow based
on regular grid. Computers and Geosciences 17: 413–422.

Gallant JC, Hutchinson MF. 2011. A differential equation for specific
catchment area. Water Resources Research 47. DOI: 10.1029/
2009WR008540.

Grabs T, Seibert J, Bishop K, Laudon H. 2009. Modeling spatial
patterns of saturated areas: A comparison of the topographic wetness
index and a dynamic distributed model. Journal of Hydrology 373(1–2):
15–23.

Grayson RB, Western AW, Chiew FHS, Blöschl G. 1997. Preferred
states in spatial soil moisture patterns: local and nonlocal controls.
Water Resources Research 33(12): 2897–2908. DOI: 10.1029/
97WR02174.

Güntner A, Seibert J, Uhlenbrook S. 2004. Modeling spatial patterns of
saturated areas: An evaluation of different terrain indices. Water
Resources Research 40. DOI: 10.1029/2003WR002864.

Haitjema HM, Mitchell-Bruker S. 2005. Are water tables a subdued
replica of the topography? Ground Water 43(6): 781–786.

Hewlett JD, Hibbert AR. 1963. Moisture and energy conditions within a
sloping soil mass during drainage. Journal of Geophysical Research 68:
1081–1087.

Hjerdt KN, McDonnell JJ, Seibert J, Rodhe A. 2004. A new topographic
index to quantify downslope controls on local drainage. Water
Resources Research 40: W05602. DOI: 10.1029/2004WR003130.

Hoshen J, Berry MW, Minser KS. 1997. Percolation and cluster structure
parameters: The enhanced Hoshen–Kopelman algorithm. Physical
Review E 56(2): 1455–1460.

Iorgulescu I, Jordan JP. 1994. Validation of TOPMODEL on a small
Swiss catchment. Journal of Hydrology 159(1–4): 255–273. DOI:
10.1016/0022-1694(94)90260-7.

Jordan JP. 1994. Spatial and temporal variability of stormflow generation
processes on a Swiss catchment. Journal of Hydrology 153(1–4):
357–382. DOI: 10.1016/0022-1694(94)90199-6.
Copyright © 2011 John Wiley & Sons, Ltd.
Kirkby M. 1975. Hydrograph modelling strategies. In Processes in
Physical and Human Geography, Peel R et al. (eds). Heinemann:
London; 69–90.

Lamb R, Beven KJ, Myrabø S. 1998. Use of spatially distributed water
table observations to constrain uncertainty in a rainfall-runoff model.
Advances in Water Resources 22(4): 305–317.

Lane SN, Brookes CJ, Kirkby MJ, Holden J. 2004. A network-index-
based version of TOPMODEL for use with high-resolution digital
topographic data. Hydrological Processes 18: 191–201. DOI: 10.1002/
hyp.5208.

McGuire KJ, McDonnell JJ, Weiler M, Kendall C, McGlynn BL, Welker
JM, Seibert J. 2005. The role of topography on catchment-scale water
residence time. Water Resources Research 41: W05002. DOI: 10.1029/
2004WR003657.

Montgomery, DR, Dietrich, WE. 1994. A physically based model for the
topographic control on shallow landsliding. Water Resources Research
30(4): 1153–1171. DOI: 10.1029/93WR02979.

O’Callaghan JF, Mark DM. 1984. The extraction of drainage networks
from digital elevation data. Computer Vision, Graphics and Image
Processing 28(3): 323–344. ISSN 0734-189X, DOI: 10.1016/S0734-
189X(84)80011-0.

Orlandini S, Moretti G. 2009. Determination of surface flow paths from
gridded elevation data. Water Resources Research 45: W03417. DOI:
10.1029/2008WR007099.

Orlandini S, Moretti G, Franchini M, Aldighieri B, Testa B. 2003. Path-
based methods for the determination of nondispersive drainage
directions in grid-based digital elevation models. Water Resources
Research 39(6): 1144. DOI: 10.1029/2002WR001639.

Pellenq J, Kalma J, Boulet G, Saulnier G-M, Wooldridge S, Kerr Y,
Chehbouni A. 2003. A disaggregation scheme for soil moisture
based on topography and soil depth. Journal of Hydrology 276:
112–127.

Quinn PF, Beven KJ, Chevallier P., Planchon O. 1991. The prediction of
hillslope flowpaths for distributed modelling using digital terrain
models. Hydrological Processes 5: 59–80.

Rigon R, Bertoldi G, Over TM. 2006. GEOtop: A distributed hydrological
model with coupled water and energy budgets. Journal of Hydro-
meteorology 7(3): 371–388.

Rodhe A, Seibert J. 1999. Wetland occurrence in relation to topography - a
test of topographic indices as moisture indicators. Agricultural and
Forest Meteorology 98–99: 325–340.

Seibert J, Bishop KH, Nyberg L. 1997. A test of TOPMODEL’s ability to
predict spatially distributed groundwater levels. Hydrological Processes
11: 1131–1144.

Seibert J, McGlynn BL. 2007. A new triangular multiple flow-direction
algorithm for computing upslope areas from gridded digital elevation
models. Water Resources Research 43: W04501. DOI: 10.1029/
2006WR005128.

Sørensen R, Seibert J. 2007. Effects of DEM resolution on the calculation
of topographical indices: TWI and its components. Journal of
Hydrology 347: 79–89.

Spearman C. 1904. The proof and measurement of association between
two things. The American Journal of Psychology 15:72–101.

Stieglitz M, Shaman J, McNamara J, Engel V, Shanley J, Kling GW.
2003. An approach to understanding hydrologic connectivity on the
hillslope and the implications for nutrient transport. Global
Biogeochemical Cycles 17(4): 1105. DOI: 10.1029/2003GB002041.

Tarboton DG. 1997. A new method for the determination of flow
directions and upslope areas in grid digital elevation models. Water
Resources Research 33(2): 309–319.

Tarolli P, Borga M, Dalla Fontana G. 2008. Analysing the influence of
upslope bedrock outcrops on shallow landsliding. Geomorphology
93(3–4): 186–200.

Tetzlaff D, Seibert J, McGuire KJ, Laudon H, Burns DA, Dunn SM,
Soulsby C. 2009a. How does landscape structure influence catchment
transit times across different geomorphic provinces? Hydrological
Processes 23: 945–953.

Tetzlaff D, Seibert J, Soulsby C. 2009b. Inter-catchment comparison
to assess the influence of topography and soils on catchment transit
times in a geomorphic province; the Cairngorm mountains,
Scotland. Hydrological Processes 23: 1874–1886. DOI: 10.1002/
hyp.7318.

Western AW, Grayson RB, Blöschl G, Willgoose GR, McMahon TA.
1999. Observed spatial organization of soil moisture and its relation to
terrain indices.Water Resources Research 35(3): 797–810. DOI: 10.1029/
1998WR900065.

Western AW, Zhou SL, Grayson RB, McMahon TA, Bloschl G,
Wilson DJ. 2004. Spatial correlation of soil moisture in small
Hydrol. Process. 25, 3909–3923 (2011)



3923UPSLOPE AND DOWNSLOPE TOPOGRAPHY IN WATER FLOW PATH
catchments and its relationship to dominant spatial hydrological
processes. Journal of Hydrology 286(1–4): 113–134. DOI: 10.1016/
j.jhydrol.2003.09.014.

Weyman DR. 1973. Measurements of the downslope flow of water in a
soil. Journal of Hydrology 20(3): 267–288. DOI: 10.1016/0022-1694
(73)90065-6.

Weyman DR. 1974. Runoff processes, contributing area and streamflow in
a small upland catchment. In Fluvial Processes in Instrumented
Copyright © 2011 John Wiley & Sons, Ltd.
Watersheds, Gregory KJ, Walling DE (eds). Institute of British
Geographers: London; 33–43.

Wolock, DM, Price CV. 1994. Effects of digital elevation model map
scale and data resolution on a topography-based watershed model.
Water Resources Research 30(11): 3041–3052. DOI: 10.1029/
94WR01971.
Hydrol. Process. 25, 3909–3923 (2011)


